Interval Matrix Eigen/ Singular-Value Decomposition and an Application

CHENYI HU
Professor and Chairman
Computer Science Department
University of Central Arkansas, USA
URL: www.cs.uca.edu
Outline

- Why interval data and interval matrix?
- Eigenvalue/singular values of an interval matrix
- Interval computing
- Practical approach for interval matrix eigenvalue/singular value decomposition
- An application on computational finance
Interval data

- **Source**: Data collected from observation and computing contain error inevitably.
- **Nature**: Variability and uncertainty are the nature of real world phenomena.
- **Ranges vs. Points**: Qualitative indicators are often presented as ranges rather than points.
- **Stream vs. Spot**: Segment and cross intersection.
Interval matrix

- Interval matrix game
- Interval decision making matrix
- Interval coefficient matrix in interval linear systems of equations
- Interval normal matrix in function least-squares approximation
- Interval Jacobean for nonlinear dynamic systems
Interval eigenvalue/vectors

1. Let A be an interval matrix.

2. We call Λ and X the eigenvalue and eigenvector sets of A. If for any $\lambda \in \Lambda$, \exists a nonzero vector $x \in X$ and $A \in A$ such that $\lambda x = Ax$; and for any nonzero vector $x \in X$, $\exists \lambda \in \Lambda$ and $A \in A$ such that $\lambda x = Ax$.
Interval singular value

6 Similarly, the singular value set of an interval matrix of A consists of diagonal matrices Σ, $\exists \forall A \in A$, \exists orthonormal matrices U and V, such that $A = U \Sigma V$

6 The challenge is to computationally find the eigenvalue and singular value sets of an interval matrix
Interval computing

- Moore proposed interval computing in later 1950's
- Operations:
 - Arithmetic: +, -, •, ÷
 - Set: ∩, ∪, ¬
 - Logic: <, =, >, ⊂, ⊆, ⊇
 - Utility functions: midpoint(), width(), I/O
- Hardware and software:
 - Intel Itanium processor
 - Sun Studio, C++ standard library, Interval BLAS
- Ups and downs, past and the current
Computational approaches

- Interval representations
 - Endpoint representation
 - Midpoint-radius representation
 - Computer representation
 - Notations
- Practical approach
 - An application
An application in computational finance

- Chen, Roll and Ross stock market forecasting (1986): changes in the stock market \((SP_t) \) are linearly determined by the following five macroeconomics factors:
 - Growth rate variations of seasonally-adjusted Industrial Production Index (IP),
 - Changes in expected inflation \((DEI_t) \)
 - Changes in unexpected inflation \((UI_t) \),
 - Default risk premiums \((DEF_t) \), and
 - Unexpected changes in interest rates \((TERM_t) \)
Point dataset

<table>
<thead>
<tr>
<th>Date</th>
<th>UI</th>
<th>DI</th>
<th>SP</th>
<th>IP</th>
<th>DF</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Jan</td>
<td>-0.00897673</td>
<td>0</td>
<td>0.014382062</td>
<td>-0.003860512</td>
<td>0.0116</td>
<td>-0.0094</td>
</tr>
<tr>
<td>30-Feb</td>
<td>-0.00671673</td>
<td>-0.0023</td>
<td>0.060760088</td>
<td>-0.015592832</td>
<td>-0.0057</td>
<td>0.0115</td>
</tr>
<tr>
<td>30-Mar</td>
<td>-0.00834673</td>
<td>0.0016</td>
<td>0.037017628</td>
<td>-0.00788855</td>
<td>0.0055</td>
<td>0.0053</td>
</tr>
<tr>
<td>30-Apr</td>
<td>0.00295327</td>
<td>0.0005</td>
<td>0.061557893</td>
<td>-0.015966279</td>
<td>0.01</td>
<td>-0.0051</td>
</tr>
<tr>
<td>30-May</td>
<td>-0.00744673</td>
<td>-0.0014</td>
<td>-0.061557893</td>
<td>-0.028707502</td>
<td>-0.0082</td>
<td>0.0118</td>
</tr>
<tr>
<td>30-Jun</td>
<td>-0.00797673</td>
<td>0.0005</td>
<td>-0.106567965</td>
<td>-0.046763234</td>
<td>0.0059</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

...

| 04-Jun | 0.00312327 | -0.0002 | 0.026818986 | 0.005903385 | -0.0028 | 0.0115 |
S & P 500 interval forecasts

Figure 2. Out-of-sample 10-year rolling interval forecasts
Comparisons

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Error</th>
<th>Standard Deviation</th>
<th>Accuracy Ratio</th>
<th>Total # of Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>0.20572</td>
<td>0.18996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidence Interval based approaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>std dev. (95%)</td>
<td>0.723505</td>
<td>0.311973</td>
<td>0.125745</td>
<td>5</td>
</tr>
<tr>
<td>(90%)</td>
<td>0.617097</td>
<td>0.338792</td>
<td>0.145145</td>
<td>7</td>
</tr>
<tr>
<td>std error (95%)</td>
<td>0.36549</td>
<td>0.431112</td>
<td>0.1219</td>
<td>35</td>
</tr>
<tr>
<td>(90%)</td>
<td>0.365712</td>
<td>0.430969</td>
<td>0.104936</td>
<td>36</td>
</tr>
<tr>
<td>Low-up bounds</td>
<td>0.066643</td>
<td>0.040998</td>
<td>0.4617</td>
<td>0</td>
</tr>
<tr>
<td>Inner Approx.</td>
<td>0.073038</td>
<td>0.038151</td>
<td>0.385531</td>
<td>0</td>
</tr>
<tr>
<td>Interval comp.</td>
<td>0.0516624</td>
<td>0.032238</td>
<td>0.641877</td>
<td>0</td>
</tr>
</tbody>
</table>

January 4, 2008
Singular value decomposition

Period = 3.0833
Conclusion and acknowledgements

- Initial study on interval matrix singular value decomposition has discovered interesting results
- Further studies are needed

Acknowledgements:
- U. S. National Science Foundation: CISE/ CCF-0727798, and CISE/ CCF-0202042
- Collaborators
- NCTS