The Immersed Boundary Method with Porous Boundary

Yongsam Kim

Department of Mathematics
Chung-Ang University

Collaborators: Charles S. Peskin (NYU), Ming-Chih Lai (National Chiao Tung Univ.), Yun-Chang Seol (Chung-Ang Univ, Korea).

Outline

- Motivation: Application Problems
- Introduction of the Immersed Boundary (IB) method
- IB method with Porous boundary
- Results
 - 2D Parachute
 - 2D Foam dynamics
 - 3D Foam dynamics
- Conclusions
Motivation

- Using the immersed boundary (IB) method,
- Investigate the interaction between a porous elastic material and fluid.
- Examples: Parachute, Foam, Lipid vesicles, and Cell membrane.
Immersed Boundary Method

- Two types of systems of equations:
 - Incompressible viscous flow (Eulerian)
 - Thin elastic material (Lagrangian)

- Interaction equations
 - Using the Dirac delta function
 - Elastic force in Lagrangian → Body force in Eulerian
 - Elastic boundary moves at a local fluid velocity (no slip condition)
Immersed Boundary Method

- Two types of systems of equations:
 - Incompressible viscous flow (Eulerian)
 - Thin elastic material (Lagrangian)

- Interaction equations
 - Using the Dirac delta function
 - Elastic force in Lagrangian \rightarrow Body force in Eulerian
 - Elastic boundary moves at a local fluid velocity (no slip condition)
Immersed Boundary Method

- Two types of systems of equations:
 - Incompressible viscous flow (Eulerian)
 - Thin elastic material (Lagrangian)

- Interaction equations
 - Using the Dirac delta function
 - Elastic force in Lagrangian \rightarrow Body force in Eulerian
 - Elastic boundary moves at a local fluid velocity (no slip condition)
Immersed Boundary Method

- Two types of systems of equations:
 - Incompressible viscous flow (Eulerian)
 - Thin elastic material (Lagrangian)

- Interaction equations
 - Using the Dirac delta function
 - Elastic force in Lagrangian → Body force in Eulerian
 - Elastic boundary moves at a local fluid velocity (no slip condition)
Immersed Boundary Method

- Two types of systems of equations:
 - Incompressible viscous flow (Eulerian)
 - Thin elastic material (Lagrangian)

- Interaction equations
 - Using the Dirac delta function
 - Elastic force in Lagrangian \rightarrow Body force in Eulerian
 - Elastic boundary moves at a local fluid velocity (no slip condition)
Equations of Motion

\[\mathbf{F} = -\frac{\partial E}{\partial \mathbf{X}}, \]
Equations of Motion

\[\mathbf{F} = -\frac{\partial E}{\partial \mathbf{X}}, \]

\[f(x, t) = \int \mathbf{F}(r, s, t)\delta(x - \mathbf{X}(r, s, t))drds, \]
Equations of Motion

\[F = -\frac{\partial E}{\partial X}, \]

\[f(x, t) = \int F(r, s, t)\delta(x - X(r, s, t))drds, \]

\[\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla p + \mu\nabla^2 u + f, \]

\[\nabla \cdot u = 0, \]
\textbf{Equations of Motion}

\[\mathbf{F} = -\frac{\partial E}{\partial \mathbf{X}}, \]

\[f(\mathbf{x}, t) = \int \mathbf{F}(r, s, t) \delta(\mathbf{x} - \mathbf{X}(r, s, t))dr ds, \]

\[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}, \]

\[\nabla \cdot \mathbf{u} = 0, \]

\[\frac{\partial \mathbf{X}}{\partial t}(r, s, t) = \mathbf{u}(\mathbf{X}(r, s, t), t) \]

\[= \int \mathbf{u}(\mathbf{x}, t) \delta(\mathbf{x} - \mathbf{X}(r, s, t))d\mathbf{x}. \]
Parachute with Porous Canopy

![Diagram of a parachute with porous canopy]

- D_c: Diameter of canopy
- D_v: Diameter of vent
- h_s: Height of suspension line

- Vent
- Suspension line
- Payload
1. Normal equilibrium of the boundary:

\[(p_1 - p_2) \left| \frac{\partial X}{\partial s} (s, t) \right| ds + \mathbf{F}(s, t) \cdot \mathbf{n} ds = 0.\]
1. Normal equilibrium of the boundary:

\[(p_1 - p_2) \left| \frac{\partial X}{\partial s} (s, t) \right| ds + F(s, t) \cdot nds = 0.\]

2. Darcy’s Law: Normal relative velocity is proportional to \((p_1 - p_2)\).
IB method with Porous Boundary
IB method with Porous Boundary

- Let \(\mathbf{U}(s, t) \) be fluid velocity at \(\mathbf{X}(s, t) \) and \(\frac{\partial \mathbf{X}}{\partial t}(s, t) \) be the boundary velocity.
Let \(U(s, t) \) be fluid velocity at \(\mathbf{X}(s, t) \) and \(\frac{\partial \mathbf{X}}{\partial t}(s, t) \) be the boundary velocity.

Normal flux:
\[
(U(s, t) - \frac{\partial \mathbf{X}}{\partial t}(s, t)) \cdot \mathbf{n} = \beta \gamma (p_1 - p_2) ds,
\]
where \(\beta \) is the number density of pores and \(\gamma \) is the conductance.
IB method with Porous Boundary

- Let $\mathbf{U}(s, t)$ be fluid velocity at $\mathbf{X}(s, t)$ and $\frac{\partial \mathbf{X}}{\partial t}(s, t)$ be the boundary velocity.

- Normal flux: $(\mathbf{U}(s, t) - \frac{\partial \mathbf{X}}{\partial t}(s, t)) \cdot \mathbf{n} = \beta \gamma (p_1 - p_2) ds$, where β is the number density of pores and γ is the conductance.

- Normal equilibrium of the boundary: $(p_1 - p_2) \left| \frac{\partial \mathbf{X}}{\partial s}(s, t) \right| ds + \mathbf{F}(s, t) \cdot \mathbf{n} ds = 0$.

The Immersed Boundary Method with Porous Boundary – p.8/27
IB method with Porous Boundary

- Let \(U(s,t) \) be fluid velocity at \(X(s,t) \) and \(\frac{\partial X}{\partial t}(s,t) \) be the boundary velocity.

- Normal flux: \((U(s,t) - \frac{\partial X}{\partial t}(s,t)) \cdot n = \beta\gamma(p_1 - p_2)ds \), where \(\beta \) is the number density of pores and \(\gamma \) is the conductance.

- Normal equilibrium of the boundary: \((p_1 - p_2)\left| \frac{\partial X}{\partial s}(s,t) \right| ds + F(s,t) \cdot n ds = 0 \).

- \((\frac{\partial X}{\partial t}(s,t) - U(s,t)) \cdot n = \frac{\beta\gamma}{\left| \frac{\partial X}{\partial s}(s,t) \right|} F(s,t) \cdot n \).

- \(\frac{\partial X}{\partial t}(s,t) = U(s,t) + \frac{\beta\gamma}{\left| \frac{\partial X}{\partial s}(s,t) \right|^2} (F(s,t) \cdot n) n \).
Let $U(s, t)$ be fluid velocity at $X(s, t)$ and $\frac{\partial X}{\partial t}(s, t)$ be the boundary velocity.

- Normal flux: $(U(s, t) - \frac{\partial X}{\partial t}(s, t)) \cdot n = \beta \gamma (p_1 - p_2) ds$, where β is the number density of pores and γ is the conductance.

- Normal equilibrium of the boundary: $(p_1 - p_2) \frac{\beta \gamma}{|\frac{\partial X(s, t)}{\partial s}|^2} F(s, t) \cdot n ds = 0$.

- $(\frac{\partial X}{\partial t}(s, t) - U(s, t)) \cdot n = \frac{\beta \gamma}{|\frac{\partial X(s, t)}{\partial s}|^2} F(s, t) \cdot n$.

- $\frac{\partial X}{\partial t}(s, t) = U(s, t) + \frac{\beta \gamma}{|\frac{\partial X(s, t)}{\partial s}|^2} (F(s, t) \cdot n)n$.

- Assuming $\lambda = \frac{\beta \gamma}{|\frac{\partial X(s, t)}{\partial s}|^2}$,

$$\frac{\partial X}{\partial t}(s, t) = u(X(s, t), t) + \lambda (F(s, t) \cdot n(s, t))n(s, t).$$
2-D Parachute with Porous Canopy

The Immersed Boundary Method with Porous Boundary – p.9/27
Motion of 2-D Parachute
2D Foam Dynamics: von Neumann relation
$2D$ Foam Dynamics: von Neumann relation

- M: permeability; γ: surface tension; κ: mean curvature.
- Assume that the gas diffuses through the wall at a rate $-M \gamma \kappa$ per unit length.
- $\frac{dA}{dt} = -M \gamma \int_\Gamma \kappa \, ds$.
2D Foam Dynamics: von Neumann relation

- \(M \): permeability; \(\gamma \): surface tension; \(\kappa \): mean curvature.
- Assume that the gas diffuses through the wall at a rate \(-M \gamma \kappa\) per unit length.
- \[
\frac{dA}{dt} = -M \gamma \int_{\Gamma} \kappa \ ds.
\]
- \[
\frac{dA}{dt} = -M \gamma (2\pi - \sum_{i=1}^{n} \alpha_i) = -2\pi M \gamma (1 - n/6),
\]
 where \(\alpha_i \): exterior angle; \(n \): number of walls.
2D Foam Dynamics: von Neumann relation

- \(M \): permeability; \(\gamma \): surface tension; \(\kappa \): mean curvature.
- Assume that the gas diffuses through the wall at a rate \(-M \gamma \kappa\) per unit length.
- \[
\frac{dA}{dt} = -M \gamma \int_{\Gamma} \kappa \, ds.
\]
- \[
\frac{dA}{dt} = -M \gamma \left(2\pi - \sum_{i=1}^{n} \alpha_i\right) = -2\pi M \gamma (1 - n/6),
\]
where \(\alpha_i \): exterior angle; \(n \): number of walls.
- The rate of change of the area of a given cell is independent of cell size and solely dependent on the number of walls (or edges) of the cell.
- The area is constant for 6-sided bubbles, bubbles with fewer than 6 sides tend to shrink, and bubbles with more than 6 sides tend to grow.
2D Foam Dynamics: Force and Normal slip

The Immersed Boundary Method with Porous Boundary – p.13/27
2D Foam Dynamics: Force and Normal slip

\[F(s, t) = \frac{\partial}{\partial s} (\gamma \tau) = \gamma \frac{\partial \tau}{\partial s}. \]

\[\tau(s, t) = \frac{\partial X}{\partial s} / \left| \frac{\partial X}{\partial s} \right|. \]
\[F(s, t) = \frac{\partial}{\partial s} (\gamma \tau) = \gamma \frac{\partial \tau}{\partial s}. \]

\[\tau(s, t) = \frac{\partial X}{\partial s} / \left| \frac{\partial X}{\partial s} \right|. \]

\[\frac{\partial X}{\partial t} (s, t) = \int u(x, t) \delta(x - X(s, t))dx + M \frac{\mathbf{F}}{\left| \frac{\partial X}{\partial s} \right|}. \]
Foam with 3 inner cells

The Immersed Boundary Method with Porous Boundary – p.14/27
2D von Neumann relation

The Immersed Boundary Method with Porous Boundary – p.15/27
Foam in an oscillatory flow

foam animation in a dynamic flow
Foam with multiple inner cells: Coarsening

The general foam animation
Coarsening with T1 and T2 processes

- **T1 process**: switch of side of foam boundaries.
- **The effect of T1 process**: reduce by one the number of edges of two cells and increase by one the number of edges of two other cells.
- **T2 process**: removal of a three-sided bubble.
- **Other topological changes are also possible through the combinations of these two processes.**
Foam with 200 cells

general foam animation with topological changes
3D Foam Dynamics

\[\frac{dV}{dt} = -2\pi M\gamma (L(D) - \frac{1}{6} \sum_{i=1}^{6} e_i(D)), \]
where \(L(D) \) is a natural measure of the linear size of domain \(D \) and \(e_i \) is the length of triple line (edge) \(i \).

- Discretized version of the 3D von Neumann relation:

\[\frac{dV}{dt} = -M\gamma \sum_{e \in E} L_e \theta_e, \]

where \(L_e \) is the length of edge \(e \) of the triangular facet, and \(\theta_e \) is the angle between the two facets with the same edge \(e \).
3D foam: Continuous force and normal slip

- Let $\mathbf{X}(r, s, t)$ be a foam boundary,

$$
\mathbf{F}(r, s, t) = -\frac{\partial E}{\partial \mathbf{X}},
$$

- $E[\mathbf{X}(\cdot, \cdot, t)] = \gamma \int \left| \frac{\partial \mathbf{X}}{\partial r} \times \frac{\partial \mathbf{X}}{\partial s} \right| \, dr \, ds$, where γ is the surface tension.
3D foam: Continuous force and normal slip

• Let \(X(r, s, t) \) be a foam boundary,

\[
F(r, s, t) = -\frac{\partial E}{\partial X},
\]

• \(E[X(\cdot, \cdot, t)] = \gamma \int \left| \frac{\partial X}{\partial r} \times \frac{\partial X}{\partial s} \right| drds, \) where \(\gamma \) is the surface tension.

• Normal slip is

\[
\frac{\partial X}{\partial t}(r, s, t) = u(X(r, s, t), t) + M F/ \left| \frac{\partial X}{\partial r} \times \frac{\partial X}{\partial s} \right|,
\]

\[
= \int u(x, t)\delta(x - X(r, s, t))dx + M F/ \left| \frac{\partial X}{\partial r} \times \frac{\partial X}{\partial s} \right|.
\]
After triangulation of the foam boundary,

\[
E[X^n] = \gamma \sum_k |T^k| = \gamma \sum_k \frac{1}{2} |(X^k_2 - X^k_1) \times (X^k_3 - X^k_1)|,
\]

where \(T^k \) is a triangle with vertices \(\{X^k_1, X^k_2, X^k_3\} \) and \(|T^k|\) is the area of the triangle \(T^k \).
After triangulation of the foam boundary,

\[E[X^n] = \gamma \sum_k |T^k| = \gamma \sum_k \frac{1}{2} |(X^k_2 - X^k_1) \times (X^k_3 - X^k_1)|, \]

where \(T^k \) is a triangle with vertices \(\{X^k_1, X^k_2, X^k_3\} \) and \(|T^k| \) is the area of the triangle \(T^k \).

Using the formula \(F^k_1 \Delta r \Delta s = -\nabla_{X^k_1} E \), where \(F^k_1 \) is the force density acting on \(X^k_1 \).

\[F^k_1 = -\frac{\gamma}{\Delta r \Delta s} \sum_{k=1} \frac{1}{2} \frac{\partial}{\partial X^k_1} |(X^k_2 - X^k_1) \times (X^k_3 - X^k_1)|, \]
3D foam: Discrete force and slip using Triangulation

- After triangulation of the foam boundary,

\[E[\mathbf{X}^n] = \gamma \sum_k |T^k| = \gamma \sum_k \frac{1}{2} |(\mathbf{X}_2^k - \mathbf{X}_1^k) \times (\mathbf{X}_3^k - \mathbf{X}_1^k)|, \]

where \(T^k \) is a triangle with vertices \(\{\mathbf{X}_1^k, \mathbf{X}_2^k, \mathbf{X}_3^k\} \) and \(|T^k| \) is the area of the triangle \(T^k \).

- Using the formula \(\mathbf{F}_1^k \Delta r \Delta s = -\nabla_{\mathbf{X}_1^k} E \), where \(\mathbf{F}_1^k \) is the force density acting on \(\mathbf{X}_1^k \).

\[\mathbf{F}_1^k = -\frac{\gamma}{\Delta r \Delta s} \sum_{k=1} \frac{1}{2} \frac{\partial}{\partial \mathbf{X}_1^k} |(\mathbf{X}_2^k - \mathbf{X}_1^k) \times (\mathbf{X}_3^k - \mathbf{X}_1^k)|, \]

\[\mathbf{F}_1^k = \frac{\gamma}{2\Delta r \Delta s} \sum_{k=1} (\mathbf{X}_3^k - \mathbf{X}_2^k) \times \mathbf{n}_1^k, \]

where \(\mathbf{n}_1^k = (\mathbf{X}_2^k - \mathbf{X}_1^k) \times (\mathbf{X}_3^k - \mathbf{X}_1^k)/|(\mathbf{X}_2^k - \mathbf{X}_1^k) \times (\mathbf{X}_3^k - \mathbf{X}_1^k)|. \]
3D foam: Discrete force and slip using Triangulation

• After triangulation of the foam boundary,

$$E[X^n] = \gamma \sum_k |T^k| = \gamma \sum_k \frac{1}{2} |(X^k_2 - X^k_1) \times (X^k_3 - X^k_1)|,$$

where T^k is a triangle with vertices $\{X^k_1, X^k_2, X^k_3\}$ and $|T^k|$ is the area of the triangle T^k.

• Using the formula $F^k_1 \Delta r \Delta s = -\nabla_{X^k_1} E$, where F^k_1 is the force density acting on X^k_1.

$$F^k_1 = -\frac{\gamma}{\Delta r \Delta s} \sum_{k=1} \frac{1}{2} \frac{\partial}{\partial X^k_1} |(X^k_2 - X^k_1) \times (X^k_3 - X^k_1)|,$$

• $F^k_1 = \frac{\gamma}{2\Delta r \Delta s} \sum_{k=1} (X^k_3 - X^k_2) \times n^k_1$,

where $n^k_1 = (X^k_2 - X^k_1) \times (X^k_3 - X^k_1)/|(X^k_2 - X^k_1) \times (X^k_3 - X^k_1)|$.

• $X^{n+1}_1 - X^n_1 = \sum_x u^{n+1}(x) \delta_h(x - X^n_1) h^3 + \frac{M F^k_1 \Delta r \Delta s}{\sum_{j=1} |T^{k,j}|/3}$.
3D Foam Dynamics with a single inner cell

- permeability=0
- permeability=0.01
- permeability=0.05

[Diagram showing pressure and vorticity with different permeability values]
3D Foam Dynamics: 3D von Neumann relation

![Graph showing volume and angle deviation over time for permeability=0 and permeability=0.01 with different values of n.]
3D General Foam with 40 Cells

permeability=0.01
3D General Foam with 40 Cells

The Immersed Boundary Method with Porous Boundary
Conclusions and Future Work:

• The results verify 2D and 3D von Neumann relations.
• The IB method can handle the interaction between porous elastic material and the surrounding fluid.
Conclusions and Future Work:

• The results verify 2D and 3D von Neumann relations.
• The IB method can handle the interaction between porous elastic material and the surrounding fluid.
• The simulation results of the foam dynamics should be compared with the statistical data.
• The 3D simulation method should include the topological changes.
• The IB method can be extended to handle wet foam dynamics with Plateau borders.
Conclusions and Future Work:

- The results verify 2D and 3D von Neumann relations.
- The IB method can handle the interaction between porous elastic material and the surrounding fluid.
- The simulation results of the foam dynamics should be compared with the statistical data.
- The 3D simulation method should include the topological changes.
- The IB method can be extended to handle wet foam dynamics with Plateau borders.
- The IB method with porous boundary can be applied to the lipid vesicle and cell boundary.